Classification of Visually Evoked Potential EEG Using Hybrid Anchoring-based Particle Swarm Optimized Scaled Conjugate Gradient Multi-Layer Perceptron Classifier

Author:

Janapati Ravichander1,Dalal Vishwas2,Desai Usha1,Sengupta Rakesh2,Kulkarni Shrirang A.3,Hemanth D. Jude4ORCID

Affiliation:

1. Department of Electronics and Communication Engineering, SR University, Warangal, Telangana, India

2. Department of Cognitive Science, SR University, Warangal, Telangana, India

3. School of Global Health Management and Informatics, University of Central Florida, Orlando, FL, USA

4. Department of Electronics and Communication Engineering, Karunya University, Coimbatore, Tamil Nadu, India

Abstract

Brain-Computer Interface is an emerging field that focuses on transforming brain data into machine commands. EEG-based BCI is widely used due to the non-invasive nature of Electroencephalogram. Classification of EEG signals is one of the primary components in BCI applications. Steady-State Visually Evoked Potential (SSVEP) paradigms have gained importance because of lesser training time, higher precision, and improved information transfer rate compared to P300 and motor imagery paradigms. In this paper, a novel hybrid Anchoring-based Particle Swarm Optimized Scaled Conjugate Gradient Multi-Layer Perceptron classifier (APS-MLP) is proposed to improve the classification accuracy of SSVEP five classes viz. 6.66, 7.5, 8.57, 10 and 12 Hz, signals. Scaled Conjugate Gradient descent anchors the initial position of Particle Swarm Optimization. The best position, Pbest, of each particle initializes an SCG-MLP, the accuracy of APS-MLP is obtained by averaging the accuracies of each SCG-MLP. The proposed method is compared with standard classifiers namely, k-NN, SVM, LDA and MLP. In which, the proposed algorithm achieves improved training and testing accuracies of 88.69% and 95.4% respectively, which is 12–15% higher than the standard EEG-based BCI classifiers. The proposed algorithm is robust, with a Cohen’s kappa coefficient of 0.96, and will be used in applications such as motion control and improving the quality of life for people with disabilities.

Funder

Science and Engineering Research Board

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3