HOW SMART DOES AN AGENT NEED TO BE?

Author:

KIRKPATRICK SCOTT1,SCHNEIDER JOHANNES J.12

Affiliation:

1. School of Computer Science and Engineering, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel

2. Department of Physics, Johannes Gutenberg University of Mainz, Staudinger Weg 7, 55099 Mainz, Germany

Abstract

The classic distributed computation is done by atoms, molecules or spins in vast numbers, each equipped with nothing more than the knowledge of their immediate neighborhood and the rules of statistical mechanics. These agents, 1023 or more, are able to form liquids and solids from gases, realize extremely complex ordered states, such as liquid crystals, and even decode encrypted messages. We will describe a study done for a sensor-array "challenge problem" in which we have based our approach on old-fashioned simulated annealing to accomplish target acquisition and tracking under the rules of statistical mechanics. We believe the many additional constraints that occur in the real problem can be folded, step by step, into this stochastic approach. The results have applicability to other network management problems on scales where a distributed solution will be mandatory.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent Developments in the Theory and Applicability of Swarm Search;Entropy;2023-04-25

2. Studying and Simulating the Three-Dimensional Arrangement of Droplets;Communications in Computer and Information Science;2020

3. Optimal Dynamic Coverage Infrastructure for Large-Scale Fleets of Reconnaissance UAVs;Swarms and Network Intelligence in Search;2017-08-04

4. Introduction to Swarm Search;Swarms and Network Intelligence in Search;2017-08-04

5. The Cooperative Hunters – Efficient and Scalable Drones Swarm for Multiple Targets Detection;Swarms and Network Intelligence in Search;2017-08-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3