STABILITY AND ACCURACY OF LATTICE BOLTZMANN SCHEMES FOR ANISOTROPIC ADVECTION-DIFFUSION EQUATIONS

Author:

SUGA SHINSUKE1

Affiliation:

1. Social and Environmental Systems Division, National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba, Ibaraki 305-8506, Japan

Abstract

The stability of the numerical schemes for anisotropic advection-diffusion equations derived from the lattice Boltzmann equation with the D2Q4 particle velocity model is analyzed through eigenvalue analysis of the amplification matrices of the scheme. Accuracy of the schemes is investigated by solving benchmark problems, and the LBM scheme is compared with traditional implicit schemes. Numerical experiments demonstrate that the LBM scheme produces stable numerical solutions close to the analytical solutions when the values of the relaxation parameters in x and y directions are greater than 1.9 and the Courant numbers satisfy the stability condition. Furthermore, the numerical solutions produced by the LBM scheme are more accurate than those of the Crank–Nicolson finite difference scheme for the case where the Courant numbers are set to be values close to the upper bound of the stability region of the scheme.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3