DEGREE CORRELATION OF BIPARTITE NETWORK ON PERSONALIZED RECOMMENDATION

Author:

LIU JIAN-GUO123,ZHOU TAO123,WANG BING-HONG123,ZHANG YI-CHENG123,GUO QIANG4

Affiliation:

1. Research Center of Complex Systems Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China

2. Department of Modern Physics, University of Science and Technology of China, Hefei 230026, P. R. China

3. Department of Physics, University of Fribourg, Fribourg CH-1700, Switzerland

4. Business School, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China

Abstract

In this paper, the statistical property, namely degree correlation between users and objects, is taken into account and be embedded into the similarity index of collaborative filtering (CF) algorithm to improve the algorithmic performance. The numerical simulation on a benchmark data set shows that the algorithmic accuracy of the presented algorithm, measured by the average ranking score, is improved by 18.19% in the optimal case. The statistical analysis on the product distribution of the user and object degrees indicate that, in the optimal case, the distribution obeys the power-law and the exponential is equal to -2.33. Numerical results show that the presented algorithm can provide more diverse and less popular recommendations, for example, when the recommendation list contains 10 objects, the diversity, measured by the hamming distance, is improved by 21.90%. Since all of the real recommendation data evolving with time, this work may shed some light on the adaptive recommendation algorithm which could change its parameter automatically according to the statistical properties of the user-object bipartite network.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3