Fermionic networks

Author:

Javarone Marco Alberto1

Affiliation:

1. Department of Mathematics and Computer Science 09124 Cagliari Italy and DUMAS — Department of Humanities and Social Sciences 07100 Sassari, Italy

Abstract

We study the structure of fermionic networks, i.e. a model of networks based on the behavior of fermionic gases, and we analyze dynamical processes over them. In this model, particle dynamics have been mapped to the domain of networks, hence a parameter representing the temperature controls the evolution of the system. In doing so, it is possible to generate adaptive networks, i.e. networks whose structure varies over time. As shown in previous works, networks generated by quantum statistics can undergo critical phenomena as phase transitions and, moreover, they can be considered as thermodynamic systems. In this study, we analyze fermionic networks and opinion dynamics processes over them, framing this network model as a computational model useful to represent complex and adaptive systems. Results highlight that a strong relation holds between the gas temperature and the structure of the achieved networks. Notably, both the degree distribution and the assortativity vary as the temperature varies, hence we can state that fermionic networks behave as adaptive networks. On the other hand, it is worth to highlight that we did not finding relation between outcomes of opinion dynamics processes and the gas temperature. Therefore, although the latter plays a fundamental role in gas dynamics, on the network domain, its importance is related only to structural properties of fermionic networks.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Asynchronous resonance caused by phase delay on adaptive networks;2022 IEEE International Conference on Cyborg and Bionic Systems (CBS);2023-03-24

2. Asynchronous resonance in the driven Ising model on adaptive networks;IOP Conference Series: Materials Science and Engineering;2020-03-01

3. Dilution of Ferromagnets via a Random Graph-Based Strategy;Complexity;2018

4. The Evolution of Hyperedge Cardinalities and Bose-Einstein Condensation in Hypernetworks;Scientific Reports;2016-09

5. Gaussian Networks Generated by Random Walks;Journal of Statistical Physics;2015-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3