Affiliation:
1. Faculty of Civil Engineering, Semnan University, Semnan, Iran
Abstract
Slug flow is a flow pattern which occurs in conveyance systems containing a two phase-fluid flow. Large air bubbles entrapped along these systems interrupt the flow and conduct to undesirable pressures and their fluctuations. Most of the previous concerning studies on slug flow phenomenon were performed in micro-channels with small scales in which the expansion of the air bubbles was negligible. In contrast, we investigated the systems with large pressure drops which conduct to abrupt increases on the volume of air phase. In this research, the verification tests applying CFD techniques were performed in OpenFOAM software by interFoam solver. The performance of morning glory spillways is investigated under steady states. While during the occurrence of flood, by increasing the depth over the spillway crest, the discharge is augmented which conducts to entrap the air pockets with pressure and velocity fluctuations. These fluctuations influence on the life of structures and their performances. This study aimed on unsteady flow in a glory morning spillway and its consequences and proposing the measures for reducing the destructive effects of slug flow. The pressure and velocity fluctuation were considered as the indices for the performance of a hydraulic structure. Spatial and temporal variations of pressure and velocity along the spillway are evaluated. Also, the influences of spillway geometry on slug flow and the measures to attenuate its destructive effects are analyzed. The results showed that the better performances of morning glory spillway are coincided by the diameter of tunnel superior than the height of water above the crest.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献