PIECEWISE FUNCTION FEEDBACK STRATEGY IN INTELLIGENT TRAFFIC SYSTEMS WITH A SPEED LIMIT BOTTLENECK

Author:

CHEN BOKUI1,SUN XIAOYAN2,WEI HUA1,DONG CHUANFEI3,WANG BINGHONG14

Affiliation:

1. Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China

2. College of Physics and Electronic Engineering, Nanning Normal University, Nanning 530001, China

3. Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109, USA

4. The Research Center for Complex System Science, University of Shanghai for Science and Technology and Shanghai, Academy of System Science, Shanghai 200093, China

Abstract

The road capacity can be greatly improved if an appropriate and effective information feedback strategy is adopted in the traffic system. In this paper, a strategy called piecewise function feedback strategy (PFFS) is introduced and applied into an asymmetrical two-route scenario with a speed limit bottleneck in which the dynamic information can be generated and displayed on the information board to guide road users to make a choice. Meanwhile, the velocity-dependent randomization (VDR) mechanism is adopted which can better reflect the dynamic behavior of vehicles in the system than NS mechanism. Simulation results adopting PFFS have demonstrated high efficiency in controlling spatial distribution of traffic patterns compared with the previous strategies.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3