Numerical study of the effects of pulsed plasma actuator on physical behavior of the fluid flow around a ducted wind turbine

Author:

Mofateh Mohsen1,Ghafouri Ashkan1,Kosarineia Abbas1,Changizian Maziar2

Affiliation:

1. Department of Mechanical Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

2. Department of Mechanical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, 61357-83151, Ahvaz, Iran

Abstract

As with other types of wind turbines, the ducted wind turbine has a bright future. On the other hand, flow separation has a consistent effect on this type of turbine, resulting in aerodynamic losses and load fluctuations. As a result, flow control systems for ducted wind turbines are critical for improving aerodynamic performance. Additionally, in this technological age, noise pollution has developed into a serious problem that must be minimized and controlled to the greatest extent feasible. This research investigates the impact of a plasma actuator as an active control approach on the flow dynamics on the blades using a finite volume code. To decrease computing costs, the URANS model and mesh adaptive methods are applied. The numerical results are confirmed by comparing them to a previously collected experimental dataset. The flow dynamics and noise emission of a micro dielectric-barrier-discharge plasma actuator were examined under the impact of discontinuous pulsing. This actuator was fitted in three distinct places at the beginning point of separation in the blade without using the ducted wind turbine’s control approach. The results indicated that positioning the actuator near the blades’ tip improves aerodynamic performance. Additionally, when the plasma actuator’s power is raised, the vortex cancellation is maximized. The results indicated that the DBD actuator generated a considerable portion of reverse flow, in this case in the opposite direction to the tip flow. The reverse flow was used to alter the pressure gradient in the tip gap area, thereby eliminating the vortex. Also, using the plasma actuator reduces the ducted wind turbine’s noise output by cutting down on the wake zone and vortices, which are the main sources of noise.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3