Affiliation:
1. Department of Physics, Indian Institute of Technology, Kanpur 208016, India
2. Texas A & M University at Galveston, TX553-1675, U.S.A.
Abstract
Diffusion on 2D site percolation clusters at p = 0.7, 0.8, and 0.9 above pc on the square lattice in the presence of two crossed bias fields, a local bias B and a global bias E, has been investigated. The global bias E is applied in a fixed global direction whereas the local bias B imposes a rotational constraint on the motion of the diffusing particle. The rms displacement Rt ~ tk in the presence of both biases is studied. Depending on the strength of E and B, the behavior of the random walker changes from diffusion to drift to no-drift or trapping. There is always diffusion for finite B with no global bias. A crossover from drift to no-drift at a critical global bias Ec is observed in the presence of local bias B for all disordered lattices. At the crossover, value of the rms exponent changes from k = 1 to k < 1, the drift velocity vt changes from constant in time t to decreasing power law nature, and the "relaxation" time τ has a maximum rate of change with respect to the global bias E. The value of critical bias Ec depends on the disorder p as well as on the strength of local bias B. Phase diagrams for diffusion, drift, and no-drift are obtained as a function of bias fields E and B for these systems.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献