Affiliation:
1. Fraunhofer Institute for Autonomous Intelligent Systems, Schloss Birlinghoven, D-53757 Sankt Augustin, Germany
2. Department of Electrical Engineering, Indian Institute of Technology Kanpur 208 016, India
3. Institute of Physics, Humboldt University Berlin, 10099 Berlin, Germany
Abstract
In this paper, we investigate the so-called "Sznajd Model" (SM) in one dimension, which is a simple cellular automata approach to consensus formation among two opposite opinions (described by spin up or down). To elucidate the SM dynamics, we first provide results of computer simulations for the spatio-temporal evolution of the opinion distribution L(t), the evolution of magnetization m(t), the distribution of decision times P(τ) and relaxation times P(μ). In the main part of the paper, it is shown that the SM can be completely reformulated in terms of a linear voter model (VM), where the transition rates towards a given opinion are directly proportional to frequency of the respective opinion of the second-nearest neighbors (no matter what the nearest neighbors are). So, the SM dynamics can be reduced to one rule, "Just follow your second-nearest neighbor". The equivalence is demonstrated by extensive computer simulations that show the same behavior between SM and VM in terms of L(t), m(t), P(τ), P(μ), and the final attractor statistics. The reformulation of the SM in terms of a VM involves a new parameter σ, to bias between anti- and ferromagnetic decisions in the case of frustration. We show that σ plays a crucial role in explaining the phase transition observed in SM. We further explore the role of synchronous versus asynchronous update rules on the intermediate dynamics and the final attractors. As compared to the original SM, we find three additional attractors, two of them related to an asymmetric coexistence between the opposite opinions.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献