The influence of hybrid nanoparticle (Fe3O4 + MWCNT) transportation on natural convection inside porous domain

Author:

Manh Tran Dinh1,Nam Nguyen Dang1,Abdulrahman Gihad Keyany2,Moradi R.3,Babazadeh Houman45

Affiliation:

1. Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam

2. Department of Petroleum Engineering, College of Engineering, Knowledge University, Erbil, Iraq

3. Department of Chemical Engineering, School of Engineering & Applied Science, Khazar University, Baku, Azerbaijan

4. Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam

5. Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam

Abstract

In this study, hybrid nanofluid free convection has been simulated within a permeable domain involving Lorentz effect. To solve and simulate the problem, Control Volume-based Finite Element Method (CVFEM) method is applied. In addition, the non-Darcy model has been used to apply permeable condition in equations. The influence of hybrid nanoparticles (Fe3O4[Formula: see text][Formula: see text][Formula: see text]MWCNT) inside water as base fluid has been studied. Meanwhile, source term of radiation impact has been described for different nanoparticle shapes. The impacts of substantial variables such as Darcy number, radiation factor, magnetic strength and Rayleigh number on nanofluid behavior were fully revealed. It can be concluded that enhancing permeability factor can improve the Nusselt number but reverse behavior can be reported for Lorentz forces.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3