Intelligent gravitational search random forest algorithm for fake news detection

Author:

Natarajan Rathika1,Mehbodniya Abolfazl2,Rane Kantilal Pitambar3,Jindal Sonika4,Hasan Mohammed Faez5,Vives Luis6,Bhatt Abhishek7

Affiliation:

1. Department of Electronics and Communication Engineering, Jaya Institute of Technology, Thiruthani, Thiruvallur, Tamilnadu, India

2. Department of Electronics and Communications Engineering, Kuwait College of Science and Technology, Doha Area, 7th Ring Road, Kuwait

3. Department of Electronics and Telecom Engineering, KCE Society’s College of Engineering and Information Technology, Jalgaon, Maharashtra 425001, India

4. Department of Computer Science and Engineering, Shaheed Bhagat Singh State University, Firozpur, Punjab 152001, India

5. Department of Finance and Banking Sciences, Kerbala University, Karbala 56001, Iraq

6. Department of Computer Science, Peruvian University of Applied Sciences, Lima 15023, Peru

7. Department of Electronics and Telecommunication, College of Engineering Pune, Maharashtra 411005, India

Abstract

Online social media has made the process of disseminating news so quick that people have shifted their way of accessing news from traditional journalism and press to online social media sources. The rapid rotation of news on social media makes it challenging to evaluate its reliability. Fake news not only erodes public trust but also subverts their opinions. An intelligent automated system is required to detect fake news as there is a tenuous difference between fake and real news. This paper proposes an intelligent gravitational search random forest (IGSRF) algorithm to be employed to detect fake news. The IGSRF algorithm amalgamates the Intelligent Gravitational Search Algorithm (IGSA) and the Random Forest (RF) algorithm. The IGSA is an improved intelligent variant of the classical gravitational search algorithm (GSA) that adds information about the best and worst gravitational mass agents in order to retain the exploitation ability of agents at later iterations and thus avoid the trapping of the classical GSA in local optimum. In the proposed IGSRF algorithm, all the intelligent mass agents determine the solution by generating decision trees (DT) with a random subset of attributes following the hypothesis of random forest. The mass agents generate the collection of solutions from solution space using random proportional rules. The comprehensive prediction to decide the class of news (fake or real) is determined by all the agents following the attributes of random forest. The performance of the proposed algorithm is determined for the FakeNewsNet dataset, which has sub-categories of BuzzFeed and PolitiFact news categories. To analyze the effectiveness of the proposed algorithm, the results are also evaluated with decision tree and random forest algorithms. The proposed IGSRF algorithm has attained superlative results compared to the DT, RF and state-of-the-art techniques.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3