Transformation of Diamond (sp3) to Graphite (sp2) Bonds by Ion-Impact

Author:

Saada David12,Adler Joan1,Kalish R.12

Affiliation:

1. Department of Physics, Technion, Haifa, Israel

2. Solid State Institute Technion, Haifa, Israel

Abstract

The formation of point defects in diamond induced by an energetic displacement of a carbon atom out of its lattice site and the relaxation of the thereby disrupted crystal are studied by molecular dynamics simulations with the Tersoff potential. The displacement energy for Frenkel pair creation is calculated to be 52 eV, in agreement with experiments. It is found that the <100> split interstitial, with a bonding configuration which resembles graphite, is the most stable defect, and the disrupted region around it is rich in sp2-like (graphitic) bonds. This region extends several nanometers and is likely to be the elementary electrically conductive cell experimentally found in radiation-damaged diamond.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3