NO-SLIP BOUNDARY CONDITION IN DISSIPATIVE PARTICLE DYNAMICS

Author:

WILLEMSEN S. M.1,HOEFSLOOT H. C. J.1,IEDEMA P. D.1

Affiliation:

1. Department of Chemical Engineering, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands

Abstract

Dissipative Particle Dynamics (DPD) has, with only a few exceptions, been used to study hydrodynamic behavior of complex fluids without confinement. Previous studies used a periodic boundary condition, and only bulk behavior can be studied effectively. However, if solid walls play an important role in the problem to be studied, a no-slip boundary condition in DPD is required. Until now the methods used to impose a solid wall consisted of a frozen layer of particles. If the wall density is equal to the density of the simulated domain, slip phenomena are observed. To suppress this slip, the density of the wall has to be increased. We introduce a new method, which intrinsically imposes the no-slip boundary condition without the need to artificially increase the density in the wall. The method is tested in both a steady-state and an instationary calculation. If repulsion is applied in frozen particle methods, density distortions are observed. We propose a method to avoid these distortions. Finally, this method is tested against conventional computational fluid dynamics (CFD) calculations for the flow in a lid-driven cavity. Excellent agreement between the two methods is found.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3