Simulation of two-phase fluid mixture flow in rectangular two-inlet cavity using lattice Boltzmann method

Author:

Qiu Ruofan1,Wang Anlin1,Gong Qiwei1,Jiang Tao1

Affiliation:

1. College of Mechanical Engineering, Tongji University, Shanghai 201804, P. R. China

Abstract

In this paper, two-phase fluid mixture flow in rectangular two-inlet cavity is studied using lattice Boltzmann method (LBM). To simulate two-phase fluids with large viscosity difference, the pseudo-potential model is improved. The improved model is verified for surface tension through Laplace's law and shown much better performance in simulating fluids with large viscosity difference than pseudo-potential model. The multiple-relaxation-time (MRT) scheme is used to enhance numerical stability. Then the two-phase fluid mixture flow with same and different viscosity in two-inlet cavity is simulated by present lattice Boltzmann (LB) model, pseudo-potential LB model and volume-of-fluid (VOF) method, respectively. The comparison of these numerical results shows that LB model is more suitable for such kind of flow than VOF method, since it can reflect repulsive forces and transitional region of two-phase fluids in dynamic process. Moreover, it also shows that present LB model has better dynamic stability than pseudo-potential model. Furthermore, simulations of the two-phase fluid mixture flow with different fluid viscosities, inlet velocities, inlet heights and outlet positions using present LB model are presented, exhibiting their effect to contact area of fluids.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3