Affiliation:
1. Department of Mathematics, National Institute of Technology, Rourkela 769008, India
Abstract
The governing equations for fluid flows, i.e. Kadomtsev–Petviashvili–Benjamin–Bona–Mahony (KP-BBM) model equations represent a water wave model. These model equations describe the bidirectional propagating water wave surface. In this paper, an auto-Bäcklund transformation is being generated by utilizing truncated Painlevé expansion method for the considered equation. This paper determines the new bright soliton solutions for [Formula: see text] and [Formula: see text]-dimensional nonlinear KP-BBM equations. The simplified version of Hirota’s technique is utilized to infer new bright soliton solutions. The results are plotted graphically to understand the physical behavior of solutions.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献