Affiliation:
1. Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt
Abstract
This paper is devoted to developing spectral solutions for the nonlinear fractional Klein–Gordon equation. The typical collocation method and the tau method are employed for obtaining the desired numerical solutions. In order to do this, a new operational matrix of fractional derivatives of Fibonacci polynomials is established. The idea behind the derivation of this matrix is based on utilizing the connection formula between the Fibonacci and Chebyshev polynomials. The introduced operational matrix is used along with the weighted residual quadrature spectral method and the collocation method to convert the nonlinear fractional Klein–Gordon equation into a system of algebraic equations. By solving the resulting system, we obtain a semi-analytic solution. The convergence and error analysis of the method are discussed. Some numerical results and discussions are presented aiming to illustrate the wide applicability and accuracy of the proposed algorithms.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献