Minimum Dominating Set Problem for Unit Disks Revisited

Author:

Carmi Paz1,Das Gautam K.2,Jallu Ramesh K.2,Nandy Subhas C.3,Prasad Prajwal R.4,Stein Yael1

Affiliation:

1. Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva - 84105, Israel

2. Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati - 781039, India

3. Advanced Computing and Microelectronics Unit, Indian Statistical Institute, Kolkata - 700108, India

4. National Institute of Technology Karnataka, Mangalore - 575025, India

Abstract

In this article, we study approximation algorithms for the problem of computing minimum dominating set for a given set [Formula: see text] of [Formula: see text] unit disks in [Formula: see text]. We first present a simple [Formula: see text] time 5-factor approximation algorithm for this problem, where [Formula: see text] is the size of the output. The best known 4-factor and 3-factor approximation algorithms for the same problem run in time [Formula: see text] and [Formula: see text] respectively [M. De, G. K. Das, P. Carmi and S. C. Nandy, Approximation algorithms for a variant of discrete piercing set problem for unit disks, Int. J. of Computational Geometry and Appl., 22(6):461–477, 2013]. We show that the time complexity of the in-place 4-factor approximation algorithm for this problem can be improved to [Formula: see text]. A minor modification of this algorithm produces a [Formula: see text]-factor approximation algorithm in [Formula: see text] time. The same techniques can be applied to have a 3-factor and a [Formula: see text]-factor approximation algorithms in time [Formula: see text] and [Formula: see text] respectively. Finally, we propose a very important shifting lemma, which is of independent interest, and it helps to present [Formula: see text]-factor approximation algorithm for the same problem. It also helps to improve the time complexity of the proposed PTAS for the problem.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On dominating set of some subclasses of string graphs;Computational Geometry;2022-12

2. Geometric Piercing Set Problem in Wireless Sensor Networks;Advanced Techniques for IoT Applications;2021-08-03

3. Vertex-edge domination in unit disk graphs;Discrete Applied Mathematics;2021-06

4. Efficient independent set approximation in unit disk graphs;Discrete Applied Mathematics;2020-06

5. Shifting Coresets: Obtaining Linear-Time Approximations for Unit Disk Graphs and Other Geometric Intersection Graphs;International Journal of Computational Geometry & Applications;2017-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3