SFCDecomp: Multicriteria Optimized Tool Path Planning in 3D Printing using Space-Filling Curve Based Domain Decomposition

Author:

Gupta Prashant1ORCID,Guo Yiran2ORCID,Boddeti Narasimha2ORCID,Krishnamoorthy Bala3ORCID

Affiliation:

1. Department of Mathematics and Statistics, Washington State University, PO Box 643113, Pullman, WA, 99164, USA

2. School of Mechanical and Materials Engineering, Washington State University, PO Box 642920, Pullman, WA, 99164, USA

3. Department of Mathematics and Statistics, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA, 98686, USA

Abstract

We explore efficient optimization of toolpaths based on multiple criteria for large instances of 3D printing problems. We first show that the minimum turn cost 3D printing problem is NP-hard, even when the region is a simple polygon. We develop SFCDecomp, a space filling curve based decomposition framework to solve large instances of 3D printing problems efficiently by solving these optimization subproblems independently. For the Buddha model, our framework builds toolpaths over a total of 799,716 nodes across 169 layers, and for the Bunny model it builds toolpaths over 812,733 nodes across 360 layers. Building on SFCDecomp, we develop a multicriteria optimization approach for toolpath planning. We demonstrate the utility of our framework by maximizing or minimizing tool path edge overlap between adjacent layers, while jointly minimizing turn costs. Strength testing of a tensile test specimen printed with tool paths that maximize or minimize adjacent layer edge overlaps reveal significant differences in tensile strength between the two classes of prints.

Funder

National Science Foundation

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3