ABSTRACT VORONOI DIAGRAMS WITH DISCONNECTED REGIONS

Author:

BOHLER CECILIA1,KLEIN ROLF1

Affiliation:

1. Institute of Computer Science I, University of Bonn, D-53113 Bonn, Germany

Abstract

Abstract Voronoi diagrams, AVDs for short, are based on bisecting curves enjoying simple combinatorial properties, rather than on the geometric notions of sites and distance. They serve as a unifying concept. Once the bisector system of any concrete type of Voronoi diagram is shown to fulfill the AVD axioms, structural results and efficient algorithms become available without further effort; for example, the first optimal algorithms for constructing nearest Voronoi diagrams of disjoint convex objects, or of line segments under the Hausdorff metric, have been obtained this way. One of these axioms stated that all Voronoi regions must be pathwise connected, a property quite useful in divide&conquer and randomized incremental construction algorithms. Yet, there are concrete Voronoi diagrams where this axiom fails to hold. In this paper we consider, for the first time, abstract Voronoi diagrams with disconnected regions. By combining a randomized incremental construction technique with trapezoidal decomposition we obtain an algorithm that runs in expected time [Formula: see text], where s is the maximum number of faces a Voronoi region in a subdiagram of three sites can have, and where mj denotes the average number of faces per region in any subdiagram of j sites. In the connected case, where s = 1 = mj , this results in the known optimal bound [Formula: see text].

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Efficient Randomized Algorithm for Higher-Order Abstract Voronoi Diagrams;Algorithmica;2018-12-18

2. Abstract Voronoi Diagrams from Closed Bisecting Curves;International Journal of Computational Geometry & Applications;2017-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3