Strongly Connected Spanning Subgraph for Almost Symmetric Networks

Author:

Abu-Affash A. Karim1,Carmi Paz2,Tzur Anat Parush2

Affiliation:

1. Software Engineering Department, Shamoon College of Engineering, Beer-Sheva 84100, Israel

2. Department of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel

Abstract

In the strongly connected spanning subgraph ([Formula: see text]) problem, the goal is to find a minimum weight spanning subgraph of a strongly connected directed graph that maintains the strong connectivity. In this paper, we consider the [Formula: see text] problem for two families of geometric directed graphs; [Formula: see text]-spanners and symmetric disk graphs. Given a constant [Formula: see text], a directed graph [Formula: see text] is a [Formula: see text]-spanner of a set of points [Formula: see text] if, for every two points [Formula: see text] and [Formula: see text] in [Formula: see text], there exists a directed path from [Formula: see text] to [Formula: see text] in [Formula: see text] of length at most [Formula: see text], where [Formula: see text] is the Euclidean distance between [Formula: see text] and [Formula: see text]. Given a set [Formula: see text] of points in the plane such that each point [Formula: see text] has a radius [Formula: see text], the symmetric disk graph of [Formula: see text] is a directed graph [Formula: see text], such that [Formula: see text]. Thus, if there exists a directed edge [Formula: see text], then [Formula: see text] exists as well. We present [Formula: see text] and [Formula: see text] approximation algorithms for the [Formula: see text] problem for [Formula: see text]-spanners and for symmetric disk graphs, respectively. Actually, our approach achieves a [Formula: see text]-approximation algorithm for all directed graphs satisfying the property that, for every two nodes [Formula: see text] and [Formula: see text], the ratio between the shortest paths, from [Formula: see text] to [Formula: see text] and from [Formula: see text] to [Formula: see text] in the graph, is at most [Formula: see text].

Funder

Lynn and William Frankel Center for Computer Science

grant 680/11 from the Israel Science Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3