Approximating Convex Polyhedra with Axis-Parallel Boxes

Author:

Zhu Binhai1

Affiliation:

1. School of Computer Science, McGill University, Montreal, Quebec H3A 2A7, Canada

Abstract

In this paper, we present an O(n4 log 2n) time algorithm to compute an approximate discrete axis-parallel box of a given n-vertex convex polyhedron P such that the given polyhedron is minimized. Here, "discrete" means that each plane containing a face of the approximate box passes through a vertex of P (or, more generally, passes through a point of a set of given points). This algorithm is significantly faster than the brute force O(n7) time solution for computing the optimal approximate axis-parallel box A* of P such that the symmetric difference of the volume between P and A* is minimized. We present a linear time algorithm to compute a pseudo-optimal (with factor [Formula: see text] approximate axis-parallel box of a convex polyhedron under the Hausdorff distance criterion. We also present O(n) and O(n7 log n) time algorithms to compute the optimal approximate ball, with or without a fixed center, of a convex polyhedron under the Hausdorff distance criterion.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Largest Volume Inscribed Rectangles in Convex Sets Defined by Finite Number of Inequalities;INFORMS Journal on Computing;2024-05

2. A combinatorial algorithm to construct 3D isothetic covers;International Journal of Computer Mathematics;2013-08

3. Automatically Approximating 3D Points with Co-Axisal Objects;2008 International Conference on Computational Sciences and Its Applications;2008-06

4. Hausdorff Matching and Lipschitz Optimization;Journal of Global Optimization;2006-07

5. Inner and outer approximations of polytopes using boxes;Computational Geometry;2004-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3