Fully-Dynamic and Kinetic Conflict-Free Coloring of Intervals with Respect to Points

Author:

de Berg Mark1,Leijsen Tim1,Markovic Aleksandar1,van Renssen André2,Roeloffzen Marcel1,Woeginger Gerhard3

Affiliation:

1. Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands

2. University of Sydney, NSW 2006, Australia

3. RWTH Aachen University, 52062 Aachen, Germany

Abstract

We introduce the fully-dynamic conflict-free coloring problem for a set [Formula: see text] of intervals in [Formula: see text] with respect to points, where the goal is to maintain a conflict-free coloring for [Formula: see text] under insertions and deletions. A coloring is conflict-free if for each point [Formula: see text] contained in some interval, [Formula: see text] is contained in an interval whose color is not shared with any other interval containing [Formula: see text]. We investigate trade-offs between the number of colors used and the number of intervals that are recolored upon insertion or deletion of an interval. Our results include: a lower bound on the number of recolorings as a function of the number of colors, which implies that with [Formula: see text] recolorings per update the worst-case number of colors is [Formula: see text], and that any strategy using [Formula: see text] colors needs [Formula: see text] recolorings; a coloring strategy that uses [Formula: see text] colors at the cost of [Formula: see text] recolorings, and another strategy that uses [Formula: see text] colors at the cost of [Formula: see text] recolorings; stronger upper and lower bounds for special cases. We also consider the kinetic setting where the intervals move continuously (but there are no insertions or deletions); here we show how to maintain a coloring with only four colors at the cost of three recolorings per event and show this is tight.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3