Spanning Properties of Yao and 𝜃-Graphs in the Presence of Constraints

Author:

Bose Prosenjit1,van Renssen André2

Affiliation:

1. School of Computer Science, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada

2. School of Computer Science, University of Sydney, 2006, NSW, Australia

Abstract

We present improved upper bounds on the spanning ratio of constrained [Formula: see text]-graphs with at least 6 cones and constrained Yao-graphs with 5 or at least 7 cones. Given a set of points in the plane, a Yao-graph partitions the plane around each vertex into [Formula: see text] disjoint cones, each having aperture [Formula: see text], and adds an edge to the closest vertex in each cone. Constrained Yao-graphs have the additional property that no edge properly intersects any of the given line segment constraints. Constrained [Formula: see text]-graphs are similar to constrained Yao-graphs, but use a different method to determine the closest vertex. We present tight bounds on the spanning ratio of a large family of constrained [Formula: see text]-graphs. We show that constrained [Formula: see text]-graphs with [Formula: see text] ([Formula: see text] and integer) cones have a tight spanning ratio of [Formula: see text], where [Formula: see text] is [Formula: see text]. We also present improved upper bounds on the spanning ratio of the other families of constrained [Formula: see text]-graphs. These bounds match the current upper bounds in the unconstrained setting. We also show that constrained Yao-graphs with an even number of cones ([Formula: see text]) have spanning ratio at most [Formula: see text] and constrained Yao-graphs with an odd number of cones ([Formula: see text]) have spanning ratio at most [Formula: see text]. As is the case with constrained [Formula: see text]-graphs, these bounds match the current upper bounds in the unconstrained setting, which implies that like in the unconstrained setting using more cones can make the spanning ratio worse.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generalized sweeping line spanners;Theoretical Computer Science;2024-03

2. Emanation Graph: A Plane Geometric Spanner with Steiner Points;Graphs and Combinatorics;2023-03-31

3. Generalized Sweeping Line Spanners;Lecture Notes in Computer Science;2022

4. Constrained routing between non-visible vertices;Theoretical Computer Science;2021-03

5. Bounded-degree spanners in the presence of polygonal obstacle;Theoretical Computer Science;2021-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3