Affiliation:
1. Division of Mathematics and Physics, UKK, Mälardalen University, Box 883, 721 23 Västerås, Sweden
2. Department of Economics, Norwegian Business School (BI), Kong Christian Frederiks plass 5, 5006 Bergen, Norway
Abstract
Various angle characteristics are used (e.g. in finite element methods or computer graphics) when evaluating the quality of computational meshes which may consist, in the three-dimensional case, of tetrahedra, prisms, hexahedra and pyramids. Thus, it is of interest to derive (preferably tight) bounds for dihedral angle sums, i.e. sums of angles between faces, of such mesh elements. For tetrahedra this task was solved by Gaddum in 1952. For pyramids, this was resolved by Korotov, Lund and Vatne in 2022. In this paper, we compute tight bounds for the remaining two cases, hexahedra and prisms.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献