Affiliation:
1. School of Chemistry, College of Science, University of Tehran, Tehran 14176, Iran
2. Physics Education Department, Faculty of Education, Tishk International University, Erbil 44001, Kurdistan Region, Iraq
Abstract
The study of intermolecular interactions is of great importance. This study attempted to quantitatively examine the interactions between bromine monochloride (BrCl) with pristine boron nitride nanotube (BNNT) armchair (5,5) and zigzag (7,0) as well as armchair (5,5) BC2NNT and zigzag (7,0) BC2NNT in vacuum. Quantum mechanical studies of such systems are possible in the density functional theory (DFT) framework. For this purpose, various functionals, such as B3LYP-D3, [Formula: see text]B97XD, and M062X, have been used. One of the most suitable basis functionals for the systems studied in this research is 6-311G (d), which has been used in both optimization calculations and calculations related to wave function analyses. The main part of this work is the study of various analyses that reveal the nature of the intermolecular interactions between the two components introduced above. The results of conceptual DFT, natural bond orbital, non-covalent interactions, and quantum theory of atoms in molecules (QTAIM) were consistent and in favor of physical adsorption in all systems. Gallium had more adsorption energy than other dopants. The HOMO–LUMO energy gaps were as follows: BNNT (5,5): 10.296, BNNT (7,0): 9.015, BC2NNT (5,5): 7.022, and BC2NNT (7,0): 5.979[Formula: see text]eV at B3LYP-D3/6-311G (d) model chemistry. The strongest interaction is related to the BC2NNT (7,0)/BrCl cluster: [Formula: see text][Formula: see text]eV. The results of QTAIM and NCI analysis identified the intermolecular interactions of the type of strong van der Waals interaction for these nanotubes. The sensitivity of the adsorption increased when a gas molecule interacted with carbon-doped BNNT, and the change in the frontier orbital gap could be used to design nanosensors to detect BrCl gas.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献