In Silico Identification of Antifungal Compounds as Mutant DHFRase Inhibitors: Structure-Based Approach, Molecular Dynamics Simulation and Structural Integrity Analysis

Author:

Basak Trambak1,Nath Virendra1,Kumar Vipin1,Goyal Amit Kumar1

Affiliation:

1. Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer-305817, India

Abstract

Fungal infection of invasive nature is an alarming threat globally and a leading cause of human morbidity and mortality as they are opportunistic in nature. Rising resistance to current clinically approved marketed products for fungal infections is a major concern for humans. Dihydrofolate Reductase (DHFRase) is an essential enzyme in folate metabolic pathway responsible for DNA synthesis and is ubiquitous to all organisms, and also acts as a key target for developing antifungal drugs. In this study, potential mutant DHFRase inhibitors were screened with the help of hierarchical mode of docking of virtual library of antifungal compounds and molecular dynamic (MD) simulation. The identification of best hits was done by using the docking, binding energy prediction and further, which was supported by their predicted pharmacokinetics. MD simulation of the human DHFRase enzyme with the reference lead compound i.e. PY957 and most promising hit found i.e. ChemDiv-C390-0455 and to validate the stability of enzyme-ligand complex in best 07 retrieved hit as a potential mutant DHFRase inhibitor. The key residues Glh30, Phe34, Phe64, Phe31 of the binding pocket acknowledged as essential were found to be matching with the key interactions of the selected hit. Computed root mean square deviation (RMSD) and root mean square fluctuation (RMSF) in MD simulation of complex of DHFRase enzyme with PY957 and ChemDiv-C390-0455 were read less than 2.25[Formula: see text]Å during 100 nanoseconds simulation for both complex.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3