Virtual Screening for the Identification of Potential Candidate Molecules Against Envelope (E) and Membrane (M) Proteins of SARS-CoV-2

Author:

Alibakhshi Abbas1,Ranjbar Mohammad Mehdi2,Javanmard Shaghayegh Haghjooy3,Yarian Fatemeh14,Ahangarzadeh Shahrzad5

Affiliation:

1. Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

2. Razi Vaccine and Serum Research Institute, Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran

3. Department of Physiology, Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran

4. Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

5. Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran

Abstract

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causes COVID-19, a disease currently spreading around the world. Some drugs are underway or being used to combat this disease. Several proteins of the virus can be targeted in therapeutic approaches. Two structural proteins, membrane (M), envelope (E) have critical roles in virus life cycle, such as assembly, budding, envelope formation and pathogenesis. Here, we employed the in silico strategies to identify and evaluate the selected potential compounds against M and E proteins. For this, the structures of proteins were modeled and then several groups of compounds as FDA approved, natural products or under clinical trials were screened from DrugBank and ZINC databases. The selected dockings were analyzed and the ligands with best binding affinity scores were subjected to evaluate drug-likeness and medicinal chemistry friendliness through prediction of ADMET properties. Normal mode analyses were also performed for six selected complexes to explore the collective motions of proteins. Molecular dynamic (MD) simulation was also performed to calculate the stability of two docked protein–ligand complexes. The results revealed that several compounds had high affinity to the proteins along with some acceptable profiles of mobility and deformability, especially, for M protein.

Funder

Isfahan University of Medical Sciences

Publisher

World Scientific Pub Co Pte Lt

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3