Affiliation:
1. School of Mathematics, Liaoning Normal University, Dalian 116029, P. R. China
2. School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, P. R. China
Abstract
Based on the redistributed technique of bundle methods and the auxiliary problem principle, we present a redistributed bundle method for solving a generalized variational inequality problem which consists of finding a zero point of the sum of two multivalued operators. The considered problem involves a nonsmooth nonconvex function which is difficult to approximate by workable functions. By imitating the properties of lower-[Formula: see text] functions, we consider approximating the local convexification of the nonconvex function, and the local convexification parameter is modified dynamically in order to make the augmented function produce nonnegative linearization errors. The convergence of the proposed algorithm is discussed when the sequence of stepsizes converges to zero, any weak limit point of the sequence of serious steps [Formula: see text] is a solution of problem (P) under some conditions. The presented method is the generalization of the convex bundle method [Salmon, G, JJ Strodiot and VH Nguyen (2004). A bundle method for solving variational inequalities. SIAM Journal on Optimization, 14(3), 869–893].
Publisher
World Scientific Pub Co Pte Lt
Subject
Management Science and Operations Research,Management Science and Operations Research
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献