Affiliation:
1. Department of Mathematical Sciences, Tsinghua University, Beijing 100084, P. R. China
Abstract
H-spectra of adjacency tensor, Laplacian tensor, and signless Laplacian tensor are important tools for revealing good geometric structures of the corresponding hypergraph. It is meaningful to compute H-spectra for some special [Formula: see text]-uniform hypergraphs. For an odd-uniform loose path of length three, the Laplacian H-spectrum has been studied. In this paper, we compute all signless Laplacian H-eigenvalues for the class of loose paths. We show that the number of H-spectrum of signless Laplacian tensor for an odd(even)-uniform loose path with length three is [Formula: see text]([Formula: see text]). Some numerical results are given to show the efficiency of our method. Especially, the numerical results show that the H-spectrum is convergent when [Formula: see text] goes to infinity. Finally, we present a conjecture that the signless Laplacian H-spectrum converges to [Formula: see text] ([Formula: see text]) for odd (even)-uniform loose path of length three.
Publisher
World Scientific Pub Co Pte Lt
Subject
Management Science and Operations Research,Management Science and Operations Research
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On the spectral radius of uniform weighted hypergraph;Discrete Mathematics, Algorithms and Applications;2022-06-27