An Adaptive Smoothing Method for Continuous Minimax Problems

Author:

Yin Hongxia12

Affiliation:

1. Department of Mathematics and Statistics, Minnesota State University Mankato, Mankato, MN 56001, USA

2. School of Management, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China

Abstract

A simple and implementable two-loop smoothing method for semi-infinite minimax problem is given with the discretization parameter and the smoothing parameter being updated adaptively. We prove the global convergence of the algorithm when the steepest descent method or a BFGS type quasi-Newton method is applied to the smooth subproblems. The strategy for updating the smoothing parameter can not only guarantee the convergence of the algorithm but also considerably reduce the ill-conditioning caused by increasing the value of the smoothing parameter. Numerical tests show that the algorithm is robust and effective.

Publisher

World Scientific Pub Co Pte Lt

Subject

Management Science and Operations Research,Management Science and Operations Research

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generalization of hyperbolic smoothing approach for non-smooth and non-Lipschitz functions;Journal of Industrial & Management Optimization;2021

2. On a new smoothing technique for non-smooth, non-convex optimization;Numerical Algebra, Control & Optimization;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3