EVALUATION OF THE ARROWS METHOD FOR CLASSIFICATION OF DATA

Author:

LU LANTING1,CURRIE CHRISTINE S. M.2

Affiliation:

1. Peninsula College of Medicine & Dentistry, University of Exeter, Veysey Building, Exeter, EX2 4SG, United Kingdom

2. School of Mathematics, University of Southampton, Southampton, SO17 1BJ, United Kingdom

Abstract

We evaluate the Arrows Classification Method (ACM) for grouping objects based on the similarity of their data. This is a new method, which aims to achieve a balance between the conflicting objectives of maximizing internal cohesion and external isolation in the output groups. The method is widely applicable, especially in simulation input and output modelling, and has previously been used for grouping machines on an assembly line, based on data on time-to-repair; and hospital procedures, based on length-of-stay data. The similarity of the data from a pair of objects is measured using the two-sample Cramér-von-Mises goodness of fit statistic, with bootstrapping employed to find the significance or p-value of the calculated statistic. The p-values coming from the paired comparisons serve as inputs to the ACM, and allow the objects to be classified such that no pair of objects that are grouped together have significantly different data. In this article, we give the technical details of the method and evaluate its use through testing with specially generated samples. We will also demonstrate its practical application with two real examples.

Publisher

World Scientific Pub Co Pte Lt

Subject

Management Science and Operations Research,Management Science and Operations Research

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Classification analysis for simulation of the duration of machine breakdowns;Journal of the Operational Research Society;2011-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3