On the Convergence Rate of Inexact Majorized sGS ADMM with Indefinite Proximal Terms for Convex Composite Programming

Author:

Li Min1,Wu Zhongming2

Affiliation:

1. School of Management and Engineering, Nanjing University, Nanjing 210093, P. R. China

2. School of Management Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, P. R. China

Abstract

In this paper, we propose an inexact majorized symmetric Gauss–Seidel (sGS) alternating direction method of multipliers (ADMM) with indefinite proximal terms for multi-block convex composite programming. This method is a specific form of the inexact majorized ADMM which is further proposed to solve a general two-block separable optimization problem. The new methods adopt certain relative error criteria to solve the involving subproblems approximately, and the step-sizes allow to choose in the scope [Formula: see text]. Under more general conditions, we establish the global convergence and Q-linear convergence rate of the proposed methods.

Publisher

World Scientific Pub Co Pte Lt

Subject

Management Science and Operations Research,Management Science and Operations Research

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3