Affiliation:
1. Centro de Investigação Algoritmi, Universidade do Minho, 4710-057 Braga, Portugal
2. Departamento de Produção e Sistemas, Universidade do Minho, 4710-057 Braga, Portugal
Abstract
This paper proposes a heuristic with stochastic neighborhood structures (SNS) to solve two-stage and three-stage two-dimensional guillotine bin packing and cutting stock problems. A solution is represented as a sequence of items which are packed into existing or new stacks, shelves or bins according to previously defined criteria. Moreover, SNS comprises three random neighborhood structures based on modifying the current sequence of items. These are called cut-and-paste, split, and swap blocks and are applied one by one in a fixed order to try to improve the quality of the current solution. Both benchmark instances and real-world instances provided by furniture companies were utilized in the computational tests. Particularly, all benchmark instances are bin packing instances (i.e., the demand of each item type is small), and all real-world instances are classified into bin packing instances and cutting stock instances (i.e., the demand of each item type is large). The computational results obtained by the proposed method are compared with lower bounds and with the solutions obtained by a deterministic Variable Neighborhood Descent (VND) meta-heuristic. The SNS provide solutions within a small percentage of the optimal values, and generally make significant improvements in cutting stock instances and slight to moderate improvements in bin packing instances over the VND approach.
Publisher
World Scientific Pub Co Pte Lt
Subject
Management Science and Operations Research,Management Science and Operations Research
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献