Effective Heuristic Techniques for Combined Robust Clustering Problem

Author:

Xu Yunhe1,Wu Chenchen1,Gai Ling2,Han Lu3

Affiliation:

1. Institute of Operations Research and Systems Engineering, College of Science, Tianjin University of Technology, No. 391 Binshui Xi Road, Tianjin 300384, P. R. China

2. Glorious Sun School of Business & Management, Donghua University, Shanghai 200051, P. R. China

3. School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China

Abstract

Clustering is one of the most important problems in the fields of data mining, machine learning, and biological population division, etc. Moreover, robust variant for [Formula: see text]-means problem, which includes [Formula: see text]-means with penalties and [Formula: see text]-means with outliers, is also an active research branch. Most of these problems are NP-hard even the most classical problem, [Formula: see text]-means problem. For the NP-hard problems, the heuristic algorithm is a powerful method. When the quality of the output can be guaranteed, the algorithm is called an approximation algorithm. In this paper, combining two types of robust settings, we consider [Formula: see text]-means problem with penalties and outliers ([Formula: see text]-MPO). In the [Formula: see text]-MPO, we are given an [Formula: see text]-point set [Formula: see text], a penalty cost [Formula: see text] for each [Formula: see text], an integer [Formula: see text], and an integer [Formula: see text]. The target is to find a center subset [Formula: see text] with [Formula: see text], a penalty subset [Formula: see text] and an outlier subset [Formula: see text] with [Formula: see text], such that the sum of the total costs, including the connection cost and the penalty cost, is minimized. We offer an approximation algorithm using a heuristic local search scheme. Based on a single-swap manipulation, we obtain [Formula: see text]-approximation algorithm.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Management Science and Operations Research,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3