Second-Order Optimality Conditions and Duality for Multiobjective Semi-Infinite Programming Problems on Hadamard Manifolds

Author:

Upadhyay Balendu Bhooshan1,Ghosh Arnav1,Stancu-Minasian I. M.2

Affiliation:

1. Department of Mathematics, Indian Institute of Technology Patna, India

2. “Gheorghe Mihoc-Caius Iacob” Institute of Mathematical Statistics and Applied Mathematics of the Romanian Academy, Bucharest, Romania

Abstract

This paper is devoted to the study of multiobjective semi-infinite programming problems on Hadamard manifolds. We consider a class of multiobjective semi-infinite programming problems (abbreviated as MSIP) on Hadamard manifolds. We use the concepts of second-order Karush–Kuhn–Tucker stationary point and second-order Karush–Kuhn–Tucker geodesic pseudoconvexity of the considered problem to derive necessary and sufficient second-order conditions of efficiency, weak efficiency and proper efficiency for MSIP along with certain generalized geodesic convexity assumptions. Moreover, we formulate the second-order Mond–Weir-type dual problem related to MSIP and deduce weak and strong duality theorems relating MSIP and the dual problem. The significance of our results is demonstrated with the help of non-trivial examples. To the best of our knowledge, this is the first time that second-order optimality conditions for MSIP have been studied in Hadamard manifold setting.

Funder

Council of Scientific and Industrial Research, New Delhi, India

Publisher

World Scientific Pub Co Pte Ltd

Subject

Management Science and Operations Research,Management Science and Operations Research

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3