Optimal Design of Online Sequential Buy-Price Auctions with Consumer Valuation Learning

Author:

Li Ao12,Wan Zhaoman1,Wan Zhong3

Affiliation:

1. School of Mathematics and Statistics, Central South University, Changsha, P. R. China

2. Department of Quantitative & Technical Economics, University of Chinese Academy of Social Sciences, Beijing, P. R. China

3. School of Mathematics and Statistics, Central South University, Hunan Changsha, P. R. China

Abstract

Buy-price auction has been successfully used as a new channel of online sales. This paper studies an online sequential buy-price auction problem, where a seller has an inventory of identical products and needs to clear them through a sequence of online buy-price auctions such that the total profit is maximized by optimizing the buy price in each auction. We propose a methodology by dynamic programming approach to solve this optimization problem. Since the consumers’ behavior affects the seller’s revenue, the consumers’ strategy used in this auction is first investigated. Then, two different dynamic programming models are developed to optimize the seller’s decision-making: one is the clairvoyant model corresponding to a situation where the seller has complete information about consumer valuations, and the other is the Bayesian learning model where the seller makes optimal decisions by continuously recording and utilizing auction data during the sales process. Numerical experiments are employed to demonstrate the impacts of several key factors on the optimal solutions, including the size of inventory, the number of potential consumers, and the rate at which the seller discounts early incomes. It is shown that when the consumers’ valuations are uniformly distributed, the Bayesian learning model is of great efficiency if the demand is adequate.

Funder

National Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Management Science and Operations Research,Management Science and Operations Research

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3