Affiliation:
1. College of Applied Sciences, Beijing University of Technology, Beijing 100022, P. R. China
2. School of Mathematics, Hunan University, Changsha 410082, P. R. China
Abstract
In this paper, we conduct a convergence rate analysis of the augmented Lagrangian method with a practical relative error criterion designed in Eckstein and Silva [Mathematical Programming, 141, 319–348 (2013)] for convex nonlinear programming problems. We show that under a mild local error bound condition, this method admits locally a Q-linear rate of convergence. More importantly, we show that the modulus of the convergence rate is inversely proportional to the penalty parameter. That is, an asymptotically superlinear convergence is obtained if the penalty parameter used in the algorithm is increasing to infinity, or an arbitrarily Q-linear rate of convergence can be guaranteed if the penalty parameter is fixed but it is sufficiently large. Besides, as a byproduct, the convergence, as well as the convergence rate, of the distance from the primal sequence to the solution set of the problem is obtained.
Publisher
World Scientific Pub Co Pte Lt
Subject
Management Science and Operations Research,Management Science and Operations Research
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献