ON THE PROPERTIES OF ∊-SENSITIVITY ANALYSIS FOR LINEAR PROGRAMMING

Author:

PARK CHAN-KYOO1,KIM WOO-JE2,PARK SOONDAL3

Affiliation:

1. Department of Management, Dongguk University, 3-26 Pil-dong, Jung-gu, Seoul 100-715, Korea

2. Department of Industrial and Information Systems Engineering, Seoul National University of Technology, Seoul, 139-743, Korea

3. Department of Industrial Engineering, Seoul National University, Seoul, 151-742, Korea

Abstract

∊-Sensitivity analysis (∊-SA) is a kind of method to perform sensitivity analysis for linear programming. Its main advantage is that it can be directly applied for interior-point methods with a little computation. In this paper, we discuss the property of ∊-SA analysis and its relationship with other sensitivity analysis methods. First, we present a new property of ∊-SA, from which we derive a simplified formula for finding the characteristic region of ∊-SA. Next, based on the simplified formula, we show that the characteristic region of ∊-SA includes the characteristic region of Yildirim and Todd's method. Finally, we show that the characteristic region of ∊-SA asymptotically becomes a subset of the characteristic region of sensitivity analysis using optimal partition. Our results imply that ∊-SA can be used as a practical heuristic method for approximating the characteristic region of sensitivity analysis using optimal partition.

Publisher

World Scientific Pub Co Pte Lt

Subject

Management Science and Operations Research,Management Science and Operations Research

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A STUDY ON SENSITIVITY ANALYSIS FOR CONVEX QUADRATIC PROGRAMS;Asia-Pacific Journal of Operational Research;2006-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3