Coherent Integration in Astronomical Interferometry: Theory and Practice

Author:

Mozurkewich David1,Jorgensen Anders2,van Belle Gerard T.3ORCID

Affiliation:

1. Seabrook Engineering, Seabrook, MD 20706, USA

2. New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA

3. Lowell Observatory, 1400 West Mars, Hill Rd. Flagstaff, AZ 86001, USA

Abstract

Ground-based long-baseline astronomical interferometry operates in a regime where short integration exposures are demanded by working in the presence of a turbulent atmosphere. To reduce piston noise to less than one radian per aperture, these exposure times are on order 10 milliseconds or less in the visible. It has long been recognized that, in the low signal-to-noise ratio (SNR) regime, the visibility SNR is improved by co-adding frames, each rotated by an estimate of its phase. However, implementation of this technique is challenging. Where it is most needed, on low SNR baselines and when combining multiple phases to estimate the phase for a lower SNR baseline, phase errors reduce the amplitude by a large amount and in a way that has proven difficult to calibrate. In this paper, an improved coherent integration algorithm is presented. A parameterized model for the phase as a function of time and wavelength is fit to the entire data set. This framework is used to build a performance model which can be used in two ways. First, it can be used to test the algorithm; by comparing its performance to theory, one can test how well the parameter fitting has worked. Also, when designing future systems, this model provides a simple way to predict performance and compare it to alternative techniques such as hierarchical fringe tracking. This technique has been applied to both simulated and stellar data.

Funder

Division of Astronomical Sciences

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3