Scalable Digital Receiver for Multi-Element Radio Telescopes

Author:

Subrahmanya C. R.1,Sarun O. S.2,Abhyankar Yogindra2,Chandrababu Sajish2,Bahulekar Chinmay2

Affiliation:

1. Raman Research Institute (RRI), Bangalore, India

2. Centre for Development of Advanced Computing (C-DAC), Pune, India

Abstract

Modern and upcoming radio telescopes at low frequencies are often characterized by hundreds or thousands of antenna elements operating at wide bandwidths up to about 0.5[Formula: see text]GHz. A spectral correlator for such an array is required to estimate the cross-power spectrum of the response of each element with that of every other element with a high spectral resolution. The resulting all-to-all connectivity between signals from the entire array poses a serious bottleneck. In this paper, we propose a simple digital receiver architecture that interfaces the digitized time series from a large number of antenna elements to a High-Performance Computing (HPC) cluster through a communication switch to overcome the data ingest bottleneck. Each HPC node can then perform wideband processing in steps of finite but significant time-slices for the entire array. We explain in detail the implementation of our architecture for the proposed expansion of the Ooty Wide Field Array (OWFA) into a 1056 element array. Since the proposed digital receiver is based on Field Programmable Gate Array (FPGA), it can be reconfigured for different applications. This is illustrated by considering the case of Phased Array Feeds (PAF) for the proposed expanded Giant Metrewave Radio Telescope (eGMRT).

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3