Compatibility Between Wind Turbines and the Radio Astronomy Service

Author:

Winkel Benjamin1ORCID,Jessner Axel1

Affiliation:

1. Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany

Abstract

Modern radio astronomical facilities are able to detect extremely weak electromagnetic signals not only from the universe but also from man-made radio frequency interference of various origins. These range from wanted signals to unwanted out-of-band emission of radio services and applications to electromagnetic interference produced by all kinds of electronic and electric devices. Energy harvesting wind turbines are not only equipped with electric power conversion hardware but also copious amounts of electronics to control and monitor the turbines. A wind turbine in the vicinity of a radio telescope could therefore lead to harmful interference, corrupting the measured astronomical data. Many observatories seek to coordinate placement of new wind farms with wind turbine manufacturers and operators, as well as with the local planning authorities, to avoid such a situation. In our study, we provide examples as well as guidelines for the determination of the separation distances between wind turbines and radio observatories, to enable a benign co-existence for both. The proposed calculations entail three basic steps. At first, the anticipated maximum emitted power level based on the European EN 550011 ( CISPR, 2015 ) standard, which applies to industrial devices, is determined. Then secondly, the propagation loss along the path to the radio receiver is computed via a model provided by the international telecommunication union. Finally, the received power is compared to the permitted power limit that pertains in the protected radio astronomical observing band under consideration. This procedure may be carried out for each location around a telescope site, in order to obtain a map of potentially problematic wind turbine positions.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3