Increasing the SOFIA Secondary Mirror Mechanism’s Fast Steering Capability by Identification of a Structural Resonance and Its Subsequent Elimination Through Mass Re-Distribution

Author:

Lammen Yannick12ORCID,Reinacher Andreas12,Greiner Benjamin1,Wagner Jörg1,Krabbe Alfred1

Affiliation:

1. Deutsches SOFIA Institut, Universität Stuttgart, Pfaffenwaldring 29, 70569, Stuttgart, Germany

2. SOFIA Airborne Systems Operations Center, NASA Armstrong Flight Research Center, 2825 E Avenue P, Building 703, Palmdale, CA 93550, USA

Abstract

The Stratospheric Observatory for Infrared Astronomy (SOFIA) consists of a 2.7[Formula: see text]m infrared telescope integrated into a Boeing 747 SP. One of the most complex subsystems of the observatory is the secondary mirror assembly (SMA). This active steering mechanism is used for image stabilization and infrared chopping. Since its integration in 2002, the performance of the mechanism is limited by a structural resonance. Based on Finite Element (FE) simulations and experimental modal surveys, a ring shaped reaction mass was identified to be the causing element of this structural mode. Attenuating the resonance on the hardware level would result in a larger actuation bandwidth for faster chopping and image stabilization. Concentrating mass at the suspension points while keeping the inertia of the ring structure is expected to take strain energy out of the mode. An end-to-end simulation, including a FE model of the mechanism and a controller model was set up to predict the in-flight performance of this concept. A segmented ring made from tungsten and AlSiC (i.e. strong mass redistribution) mounted on the original suspension was selected for the design of a prototype. The prototype was manufactured and thoroughly tested on a full-scale mockup of the mechanism confirming the predicted performance. An actuation bandwidth improvement of 80% was achieved. The settling time for infrared chopping was reduced from 10 to 7[Formula: see text]ms providing about 3.3% higher efficiency for observations with 5[Formula: see text]Hz chopping.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Instrumentation

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3