Modeling Reinforced Concrete Moment Frames Supported on Quintuple Friction Pendulum Bearings for Nonlinear Response History Analysis

Author:

Habib Ahed1ORCID,Yildirim Umut1

Affiliation:

1. Department of Civil Engineering, Eastern Mediterranean University, Famagusta, North Cyprus, via Mersin 10, Turkey

Abstract

Base isolation systems have attained significant advancements over the past several decades, with new technologies being developed to enhance the performance of structures when subjected to moderate and severe seismic excitations. The multi-stage friction pendulum is among the most efficient systems owing to its broad range of effective pendula with several regimes that provide excellent energy dissipation abilities. Lately, a new generation of friction pendulum bearings called “Quintuple Friction Pendulum” was introduced to the literature and has since gained the attention of researchers. This isolator’s most significant advantages are the results of its capability to achieve multi-stage adaptive behavior which shows high energy dissipation capability from structures exposed to horizontal forces. Indeed, investigations that outlined the process for nonlinear modeling of structures supported on this type of isolation system are scarce. Thus, this research is intended to illustrate and discuss the approach for developing seismic code compliance finite element models for designing and analyzing reinforced concrete moment frames supported on quintuple friction pendulum bearings for nonlinear response-history analysis in OpenSees and SAP2000. As a part of the study, the nonlinearity of the isolation system and the superstructure will be considered. Moreover, the methods for overcoming essential issues such as damping leakage and isolator’s stiffness correction will be discussed. In general, the results of the discussed numerical examples have shown that both finite element packages are capable of achieving QFP hysteresis behavior as well as computing similar superstructural responses. Furthermore, the illustrated method of overcoming damping leakage provided reliable outcomes compared to the theoretical expectations. As well as the suggested approach for correcting the isolator’s initial stiffness was helpful in terms of accurately capturing the structure’s periods.

Funder

Eastern Mediterranean University

Publisher

World Scientific Pub Co Pte Ltd

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3