Bond Slip in Reinforced Concrete Beam–Column Joints — A Semi-Empirical Implicit Modeling and Possible Influence of Design Standard Compliance

Author:

Basu Dhiman1,Lakhani Mohit1

Affiliation:

1. Department of Civil Engineering, Indian Institute of Technology, Gandhinagar, Palaz, Gujarat 382355, India

Abstract

Bond slip in RC beam–column joints may affect the seismic response or performance assessment of structures considerably. Explicit macroscopic models that satisfy the joint kinematics can be incorporated within a frame model to numerically account for the effect of bond slip. Seismic performance assessment of buildings generally rules out the explicit modeling owing to the associated computational cost. Simplified implicit models are instead preferred owing to the ease of implementation in a commercial finite element (FE) provided the model parameters are calibrated experimentally. Extrapolation of the calibration is generally not valid in other cases with different geometry, sizes and even loading protocols. Most commercial software do not offer the features to explicitly modeling the bond slip. Numerical modeling of bond slip is proposed in this paper that can be conveniently implemented in a commercial software such as Seismostruct. Unlike the prior art, the slip parameter can be extracted using a semiempirical approach preceded by the generation of a numerical database. The proposed framework is also validated against the experimental results of one exterior and one interior beam–column joints. Sample illustration on an example building designed against the same seismic hazard level but following the recommendations per IS 13920, ACI 318 and EC8 is considered for monotonic (without bond slip) and cyclic (with bond slip) pushover analyses. Consideration of bond slip initiates early yielding and results in reduction of secant stiffness at the onset of yielding. The extent of influence depends on the compliance of design standards. For example, relatively higher percentage of reinforcement when designed per IS 13920 (as compared to ACI 318 and EC8) leads to a somewhat lower slip parameter resulting in lesser yield displacement and reduction of secant stiffness at the onset of yielding.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Oceanography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3