Design of an Overhead Water Tank as a Passive Tuned Damper Using an Innovative Support System Adaptive to Liquid Depth Fluctuation in the Tank

Author:

Konar Tanmoy1ORCID

Affiliation:

1. West Bengal Police Housing and Infrastructure, Development Corporation Limited, Salt Lake, Kolkata, 700091, India

Abstract

Difficulty in maintaining tuning due to water depth fluctuation makes overhead water tanks (OWTs) ineffective as tuned liquid or mass dampers. Recently, a semi-active damper involving OWT, that varies the stiffness of the tank-supporting columns with liquid depth variation to maintain the impulsive frequency of the tank constant at a value required for tuning, has been proposed. In this paper, the concept is extended to develop a passive tuned damper involving the OWT (PTD-OWT), which is more reliable, cost-effective, and has a simpler configuration than its semi-active counterpart but achieves the same objective as the latter. For the PTD-OWT, a novel mechanism involving a spring-supported platform, a rigid frame, and tank-supporting columns is developed. The working principle and mathematical model of the PTD-OWT are presented followed by an illustrative design example considering the host building undergoing base excitation. The results revealed that the PTD-OWT remains tuned and thereby performs consistently despite wide variations in water depth in the tank. Significant reductions have been achieved by the PTD-OWT in peak and root-mean-square displacement and acceleration responses of the structure for a variation in liquid depth between 100% full tank to empty tank condition, with the maximum fall in control achieved as only 6.8%. A comparison of PTD-OWT is made with the case when the tank is designed as a conventional passive tuned mass damper (TMD) without the provision for maintaining tuning. The conventional mass damper suffers significant performance degradation as liquid depth fluctuates in the tank.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3