Affiliation:
1. Department of Mechanical and Industrial Engineering, Southern Illinois University Edwardsville, Edwardsville, IL62026-1805, USA
Abstract
This paper presents a Ying–Yang theory for nonlinear discrete dynamical systems considering both positive and negative iterations of discrete iterative maps. In the existing analysis, the solutions relative to "Yang" in nonlinear dynamical systems are extensively investigated. However, the solutions pertaining to "Ying" in nonlinear dynamical systems are investigated. A set of concepts on "Ying" and "Yang" in discrete dynamical systems are introduced to help one understand the hidden dynamics in nonlinear discrete dynamical systems. Based on the Ying–Yang theory, the periodic and chaotic solutions in nonlinear discrete dynamical system are discussed, and all possible, stable and unstable periodic solutions can be analytically predicted. A discrete dynamical system with the Henon map is investigated, as an example.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献