CHAOTIC DETECTOR FOR BPSK SIGNALS IN VERY LOW SNR CONDITIONS

Author:

ZHANG SONG1,RUI GUO-SHENG1

Affiliation:

1. Electronic Information Engineering Department, Naval Aeronautical and Astronautical University, Er Ma Road, Yantai, Shandong 264001, P. R. China

Abstract

Chaotic detection of weak signals based on Duffing oscillator uses the property of sensitive dependence on initial conditions (SDIC). A small signal can cause a transition between the states of the system and thus be detected. Different from the early works, we concentrate on using chaotic oscillator as a detector for BPSK signals in very low signal-to-noise ratio (SNR) conditions. Phase transition identification is the key step of weak signals detection by using Duffing oscillator. In this paper, we expose a novel algorithm to use Teager energy operator (TEO) to identify the phase transition, which is more easily to be calculated than the usually used methods. According to this algorithm, a methodology is proposed for detection for BPSK signals using Duffing oscillator. A powerline carrier communication system is studied as an example to illustrate the bit error performance of the proposed chaotic detector. The simulation results show that the proposed detector works much better than the traditional coherent demodulation in strong background noise, and it can improve the error performance of uncoded BPSK signal approaching the Shannon limit curve. The proposed chaotic detector gives us another way to approach the Shannon limit without using any complex channel code technology.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3