Heteroclinic Chaotic Threshold in a Nonsmooth System with Jump Discontinuities

Author:

Tian R. L.123ORCID,Wang T.123,Zhou Y. F.123,Li J.4,Zhu S. T.4

Affiliation:

1. State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, P. R. China

2. Key Laboratory of Smart Materials and Structures Mechanics, Hebei Province, 050043, P. R. China

3. Department of Engineering Mechanics, Shijiazhuang Tiedao University, Shijiazhuang 050043, P. R. China

4. College of Applied Sciences, Beijing University of Technology, Beijing 100124, P. R. China

Abstract

In smooth systems, the form of the heteroclinic Melnikov chaotic threshold is similar to that of the homoclinic Melnikov chaotic threshold. However, this conclusion may not be valid in nonsmooth systems with jump discontinuities. In this paper, based on a newly constructed nonsmooth pendulum, a kind of impulsive differential system is introduced, whose unperturbed part possesses a nonsmooth heteroclinic solution with multiple jump discontinuities. Using the recursive method and the perturbation principle, the effects of the nonsmooth factors on the behaviors of the nonsmooth dynamical system are converted to the integral items which can be easily calculated. Furthermore, the extended Melnikov function is employed to obtain the nonsmooth heteroclinic Melnikov chaotic threshold, which implies that the existence of the nonsmooth heteroclinic orbits may be due to the breaking of the nonsmooth heteroclinic loops under the perturbation of damping, external forcing and nonsmooth factors. It is worth pointing out that the form of the nonsmooth heteroclinic Melnikov function is different from the one of the nonsmooth homoclinic Melnikov function, which is quite different from the classical Melnikov theory.

Funder

the Natural Science Foundation of China

Natural Science Foundation for Outstanding Young Researcher in Hebei Province of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3