A NONLINEAR DYNAMICS PERSPECTIVE OF WOLFRAM'S NEW KIND OF SCIENCE PART VI: FROM TIME-REVERSIBLE ATTRACTORS TO THE ARROW OF TIME

Author:

CHUA LEON O.1,SBITNEV VALERY I.1,YOON SOOK1

Affiliation:

1. Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA 94720, USA

Abstract

This paper proves, via an analytical approach, that 170 (out of 256) Boolean CA rules in a one-dimensional cellular automata (CA) are time-reversible in a generalized sense. The dynamics on each attractor of a time-reversible rule N is exactly mirrored, in both space and time, by its bilateral twin ruleN. In particular, all 69 period-1 rules, 17 (out of 25) period-2 rules, and 84 (out of 112) Bernoulli rules are time-reversible. The remaining 86 CA rules are time-irreversible in the sense that N and N mirror their dynamics only in space, but not in time. In this case, each attractor of N defines a unique arrow of time. A simple "time-reversal test" is given for testing whether an attractor of a CA rule is time-reversible or time-irreversible. For a time-reversible attractor of a CA rule N the past can be uniquely recovered from the future of N, and vice versa. This remarkable property provides 170 concrete examples of CA time machines where time travel can be routinely achieved by merely hopping from one attractor to its bilateral twin attractor, and vice versa. Moreover, the time-reversal property of some local rules can be programmed to mimic the matter–antimatter "annihilation" or "pair-production" phenomenon from high-energy physics, as well as to mimic the "contraction" or "expansion" scenarios associated with the Big Bang from cosmology. Unlike the conventional laws of physics, which are based on a unique universe, most CA rules have multiple universes (i.e. attractors), each blessed with its own laws. Moreover, some CA rules are endowed with both time-reversible attractors and time-irreversible attractors. Using an analytical approach, the time-τ return map of each Bernoulli στ-shift attractor of all 112 Bernoulli rules are shown to obey an ultra-compact formula in closed form, namely,. [Formula: see text] or its inverse map. These maps completely characterize the time-asymptotic (steady state) behavior of the nonlinear dynamics on the attractors. In-depth analysis of all but 18 global equivalence classes of CA rules have been derived, along with their basins of attraction, which characterize their transient regimes. Above all, this paper provides a rigorous nonlinear dynamics foundation for a paradigm shift from an empirical-based approach à la Wolfram to an attractor-based analytical theory of cellular automata.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3